Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene Tbx3
نویسندگان
چکیده
In the vertebrate limb over 40 muscles are arranged in a precise pattern of attachment via muscle connective tissue and tendon to bone and provide an extensive range of motion. How the development of somite-derived muscle is coordinated with the development of lateral plate-derived muscle connective tissue, tendon and bone to assemble a functional limb musculoskeletal system is a long-standing question. Mutations in the T-box transcription factor, TBX3, have previously been identified as the genetic cause of ulnar-mammary syndrome (UMS), characterized by distinctive defects in posterior forelimb bones. Using conditional mutagenesis in mice, we now show that TBX3 has a broader role in limb musculoskeletal development. TBX3 is not only required for development of posterior forelimb bones (ulna and digits 4 and 5), but also for a subset of posterior muscles (lateral triceps and brachialis) and their bone eminence attachment sites. TBX3 specification of origin and insertion sites appears to be tightly linked with whether these particular muscles develop and may represent a newly discovered mechanism for specification of anatomical muscles. Re-examination of an individual with UMS reveals similar previously unrecognized muscle and bone eminence defects and indicates a conserved role for TBX3 in regulating musculoskeletal development.
منابع مشابه
Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome.
Spontanteous mutations in the T-box gene TBX3, result in the human ulnar-mammary syndrome, a dominant developmental disorder characterized by abnormal forelimb and apocrine gland development. In order to develop a mouse model to study the role of this gene during development and disease, we produced a mutation in the mouse ortholog, Tbx3. The phenotype of the mutant mice verifies the role of th...
متن کاملMouse Tbx3 Mutants Suggest Novel Molecular Mechanisms for Ulnar-Mammary Syndrome
The transcription factor TBX3 plays critical roles in development and TBX3 mutations in humans cause Ulnar-mammary syndrome. Efforts to understand how altered TBX3 dosage and function disrupt the development of numerous structures have been hampered by embryonic lethality of mice bearing presumed null alleles. We generated a novel conditional null allele of Tbx3: after Cre-mediated recombinatio...
متن کاملThe ulnar-mammary syndrome gene, Tbx3, is a direct target of the retinoic acid signaling pathway, which regulates its expression during mouse limb development
TBX3, a member of the T-box transcription factor gene family, is a transcriptional repressor that is required for the development of the heart, limbs, and mammary glands. Mutations in TBX3 that result in reduced functional protein lead to ulnar-mammary syndrome, a developmental disorder characterized by limb, mammary gland, tooth, and genital abnormalities. Increased levels of TBX3 have been sh...
متن کاملTBX3 Regulates Splicing In Vivo: A Novel Molecular Mechanism for Ulnar-Mammary Syndrome
TBX3 is a member of the T-box family of transcription factors with critical roles in development, oncogenesis, cell fate, and tissue homeostasis. TBX3 mutations in humans cause complex congenital malformations and Ulnar-mammary syndrome. Previous investigations into TBX3 function focused on its activity as a transcriptional repressor. We used an unbiased proteomic approach to identify TBX3 inte...
متن کاملA dominant repression domain in Tbx3 mediates transcriptional repression and cell immortalization: relevance to mutations in Tbx3 that cause ulnar-mammary syndrome.
Mutations in Tbx3 are responsible for ulnar-mammary syndrome (UMS), an autosomal dominant disorder affecting limb, tooth, hair, apocrine gland and genital development. Tbx3 is a member of a family of transcription factors that share a highly conserved DNA-binding domain known as the T-domain. UMS-causing mutations in Tbx3 have been found at numerous sites within the TBX3 gene, with many occurri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2016